Source: Mirage News |  | April 15, 2020

Hugh O'Neill, director of ORNL's Center for Structural and Molecular Biology, is leading a team of scientists in an ambitious research campaign to provide structural information at the atomic scale on SARS-CoV-2. He and his team are using neutron scattering at two of DOE's flagship research facilities to aid in the development of treatments to stop the deadly virus. (credit: ORNL/Carlos Jones)

Hugh O’Neill, director of ORNL’s Center for Structural and Molecular Biology, is leading a team of scientists in an ambitious research campaign to provide structural information at the atomic scale on SARS-CoV-2. He and his team are using neutron scattering at two of DOE’s flagship research facilities to aid in the development of treatments to stop the deadly virus. (credit: ORNL/Carlos Jones)

As the world grapples with the devastating effects of COVID-19, US national laboratories are mobilizing to use their facilities and resources to fight the deadly virus that causes the disease.

At the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), it’s all-hands-on-deck for the world-leading experts in neutron scattering. Researchers at the lab’s Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR) have a plan of attack to unleash a full barrage of neutron capabilities in an ambitious set of experiments that aim to provide critical pieces of information about the virus’s biological structure and how it behaves. The neutron data will be combined with contributions from other national labs and sent to Summit-the world’s most powerful supercomputer-to run simulations with the goal of finding inhibitors, or molecular matching compounds to block the virus’s ability to replicate and spread.

“The coronavirus has been with us for many years in various forms and mutations. Today, it’s a global pandemic and it’s going to keep coming back again and again until we find a way to stop it,” said Paul Langan, ORNL’s associate laboratory director for Neutron Sciences. “So, what can we do? We can conduct research that provides us with insights that allow us to develop therapies and diagnostics that will make a lasting impact.”

COVID-19 is the disease that comes from exposure to the virus SARS-CoV-2. It’s part of the family of coronaviruses that have also led to diseases such as SARS and MERS, which cause acute respiratory and gastrointestinal or neurological diseases and other illnesses by infecting host cells and suppressing their immune responses. The surface of the virus is covered with spike-like tendrils that aggressively anchor it to cells in the body. Once it is attached, the genetic material encapsulated inside the virus hijacks the machinery of the host cell and forces it to produce viral proteins that lead to the propagation and spread of new viruses, which continue the assault by assimilating other cells.

“Neutrons are nondestructive particles that are highly sensitive to light elements such as hydrogen. When they interact with or bounce off atoms within a material, they reveal fundamental information about how the material’s atoms are arranged and how the material functions,” said Neutron Scattering Division Director Hans Christen. “That gives us the information we need to understand the function of such viral proteins at the level of individual atoms, but also to understand how such materials aggregate and interact with each other.”

For the past several weeks, an ORNL team of molecular and structural biologists led by Hugh O’Neill, Director of the Center for Structural Molecular Biology (CSMB), has been developing a plan to study SARS-CoV-2 proteins that will be produced from synthetic DNA constructs. The genes will be inserted into bacteria to produce proteins of the virus, which will be studied using a suite of neutron scattering instruments to gain a better understanding of the structure and function of the disease. The new knowledge will lend itself to the development of improved methods for mitigating the virus.

Click here to read the full article.