Source: | Ryan F. Mandelbaum | December 19, 2017

A million Russian artillery shells helped scientists discover the Higgs boson. And all over the world, remnants of World War II weapons are built into the most mysterious experiments in physics.

In the mid-1990s, physicists needed tons of a metal strong enough to withstand the massive magnetic fields of the house-sized Compact Muon Solenoid (CMS) experiment, one of the particle detectors on the Large Hadron Collider in Geneva, Switzerland. They settled on high-quality brass – but where would they get enough of it?

Although Russian science was floundering during the 1990s, those Russian scientists who were part of the international CMS collaboration still wanted to help. One of the scientists remembered that the brass in the tough artillery shell casements had the exact qualitiesthat the detector needed. A Russian navy commander agreed to give shells leftover from World War II to the CMS scientists, who used 600 metric tons of the brass in the experiment. The LHC turned on in 2009, and with the CMS detector’s help, ended a 50-year, many-billion-dollar search with the joint discovery of the elusive Higgs boson particle in 2012.

Proving the most basic laws of physics (you know, just the ones that make up the fabric of our being) is really expensive. These days, fundamental particle-hunting experiments can cost billions of dollars, so recycling is common. Parts are frequently swapped between machines. Magnets originally built for medical imaging machines can find their way into nuclear physics research. And sometimes, decommissioned war parts end up in some of the most important physics experiments, including several Nobel Prize winners that have shaped our modern understanding of how the universe works.

World War II left behind huge warships plated with steel several inches thick, material from nuclear weapons development, and other parts which scientists acquired through connections, government surplus lists, and other back channels. In many cases, the parts are free (except for the cost of shipping).

In the United States, war-part re-purposing commonly involved using the steel armour plating from decommissioned ships. Particle physicists working during the 1960s and 1970s used metal to do just about the same thing it did for the warship: keep unwanted things out. For these experiments, that thing was background radiation.

“The physicists knew they were going to need large quantities of high-density material,” Valerie Higgins, an archivist from Fermi National Accelerator Laboratory in Illinois, or Fermilab, told Gizmodo. “They were looking for inexpensive ways to get that material. They considered using used soil, or automobiles — but steel would be a much better means of shielding. What they needed was to filter out unwanted particles.”

But more importantly, this cheap steel is thick as hell. In 1962, American physicists Leon Lederman, Jack Steinberger, and Melvin Schwartz could have been one of the first teams to incorporate such a large quantity of wartime metal into their experiments at Brookhaven National Lab in New York. They hoped to better study neutrinos, incredibly tiny and incredibly common particles which most experiments can’t detect because they barely interact with regular matter at all. They’re almost like ghosts.

Studying the properties of such elusive particles required ingenious thinking. The physicists thought they could blast a hunk of some target metal, beryllium, with a beam of protons from the Alternating Gradient Synchrotron experiment at Brookhaven. This would result in a shower of different particles. Putting the steel between the shower and their final detector would ensure only neutrinos made it through.

Click here to read the full article.