Source: HPC Wire | Tiffany Trader | October 21, 2019

October 18 (aka 10/18) marked the first annual exascale day, hosted by Cray, the Exascale Computing Project and the DOE labs — Argonne, Oak Ridge and Lawrence Livermore — that are getting ready to host the nation’s first exascale supercomputers. All three machines will be built by Cray utilizing their Shasta architecture, Slingshot interconnect and new software platform.

To mark the occasion, Cray (now an HPE company) and the DOE hosted a virtual panel discussion Friday morning. The participants came together to discuss how the exascale era will change the face of computational science and the advances it will foster. The panel was moderated by Earl Joseph, CEO of HPC analyst firm Hyperion Research.

Joining the panel were:

Doug Kothe, ECP Director
Steve Scott, Cray CTO
Rick Stevens, Associate Lab Director, ANL
Jeff Nichols, Associate Lab Director, ORNL
Michel McCoy, LLNL Program Directory

 

Crossing the exascale threshold gives rise to a computer that can perform 1018 (18 quintillion) adds or multiplies per second. October 18 seemed a natural choice to acknowledge this important computational milestone and the community that is working to enable it. “[Exascale computing] really is the major driver for the future of our society and making the world a much better place as far as advancing science, building better products, improving health care for everyone and [reducing] the cost of health care, and also doing very unusual and fascinating things like testing the impossible in the world,” said Hyperion’s Joseph.

The trajectory from megaflops to exaflops brings a trillion-times growth in the ability to carry out adds or multiplies. “This allows us to do all kinds of science that we weren’t able to do 40 years ago,” said ORNL’s Nichols. “When we were doing calculations 40 years ago, we would be lucky to actually get something that would be close to experiment, but today, we can actually predict what experimentalists might go find in their laboratories.”

Click here to read the full article.